32 СУБОРДИНАЦИЯ. ПРОСТРАНСТВЕННАЯ ПЫЛЬ ЛЕВИ. УПОРЯДОЧЕННЫЕ ГАЛАКТИКИЦентральной темой этой и следующей глав являются скопления галактик (эту тему мы уже затрагивали в главах 9, 22 и 23). Пользуясь известными методами, мы обобщим пылевидные множества из предыдущей главы на плоскость и пространство. В настоящее главе мы будем в основном заниматься пространственной пылью Леви. Следуя Бохнеру, мы введем эти фракталы посредством «обработки» броуновского движения по методу «субординации». Вдобавок к пыли Леви мы познакомимся с полетом Леви, представляющим собой нестандартное случайное блуждание. Начинается глава с неформального предисловия, посвященного кластерам случайного блуждания. Далее, путем обобщения на неслучайные структуры объясняется и обосновывается метод субординации. Утверждения, сделанные в предисловии, обосновываются в последнем разделе. Предисловие: кластеры случайного блуждания Цель моей ранней модели скопления галактик состояла в демонстрации распределения масс со следующими характерными особенностями: Промежуточные остановки полета Рэлея. В качестве предварительного шага рассмотрим конструкцию, ни фрактальная, ни топологическая размерность которой не совпадает с размерностями скоплений галактик. Начиная с некоторой точки
представляет собой независимые и тождественно распределенные векторы. И так далее. Если предположить, что движение ракеты не ограничено ни началом, ни концом, следует добавить и предыдущие остановки След нашей ракеты (включая и «инверсионный след», который она оставляет при прыжках) представляет собой случайное множество. Таким же случайным множеством является и совокупность точек промежуточных остановок, рассмотренная без учета порядка их посещения. Оба множества следуют совершенно одинаковому распределению при рассмотрении с любой из точек Погрузка. Тождественно распределенные и статистически независимые массы приписываются случайным образом к каждой промежуточной остановке полета Рэлея, распространяя на массы условную стационарность. Размерность Броуновское движение. Интерполируя полет Рэлея в непрерывном времени, получаем броуновский след, который (см. главу 25) представляет собой непрерывную кривую с размерностью Обобщенная плотность. Если нагрузить броуновский след между точками Расширение Вселенной. В рамках стандартных дискуссий исходное распределение имеет равномерную плотность Таким образом, в вопросе о возможном расширении Вселенной, промежуточные остановки Рэлея занимают промежуточную позицию. Это свойство остановок сохраняется и в том случае, когда размерность Промежуточные остановки полета Леви. Нецелочисленные размерности Важнейшим следствием такого рассуждения можно считать соотношение Отступление об устойчивости по Леви. При Поскольку В оставшейся части главы мы построим пыль, которая играет в отношении полета Леви ту же роль, какую броуновское движение играет в отношении полета Рэлея. Прямая интерполяция утомительно формальна, поскольку ей приходится придавать смысл распределению Полет коши и Воспользуемся для представления процесса субординации наглядным примером. Если исходной кривой является броуновский след с размерностью Расширив этот метод вычитания 1 из Возьмем в качестве исходного броуновский след из прямой в 4 - пространство и рассмотрим точки, координата «юмор» которых равна 0. Можно представить, что эти «серьезные» точки порождаются в том порядке, в каком они посещаются соответствующим броуновским движением, и что расстояния между этими посещаемыми точками независимы и изотропны. Следовательно, серьезные точки можно рассматривать как промежуточные остановки случайного полета, правила построения которого существенно отличаются от правил построения броуновского движения. Такое блуждание мы будем называть движением (или полетом) Коши. При заданных моментах времени 0 и
Формальное допущение Понятие субординации Рассмотрим внимательнее построение из предыдущего раздела. Броуновское движение из прямой в А пока заметим на будущее, что
Субординация применима и к неслучайным фракталам Для более глубокого понимания природы фрактальной субординации применим ее к некоторым фрактальным кривым Коха и Пеано. (Как это ни странно, но настоящее обсуждение является, по всей видимости, первым случаем упоминания субординации и неслучайном контексте.) Идея заключается в модификации посредством замены генератора (при неизменном инициаторе) не некоторое подмножество исходного генератора. Такая операция замещает предельное фрактальное множество (которое мы будем называть субординантом) на некоторое субординантное подмножество (или субординат). Рассмотрим сначала примеры, а затем введем весьма важное правило – правило умножения размерностей. Пример с Пример с Умножение размерностей В главах 6 и 7 мы упоминали о том, что кривые Коха и Пеано можно рассматривать как следы «движений», временной параметр Следовательно, мы можем охарактеризовать наши субординатные подмножества кривых Коха и Пеано как фрактальные отображения фрактального подмножества моментов времени. Совершенно очевидно, что такое подмножество представляет собой канторову пыль; назовем его субординатором. Его размерность равна
Это также обобщает и то соотношение, которое характеризует движение Коши. При рассмотрении сечений и пересечений мы уже встречались с суммами размерностей. Теперь же оказывается, что в нашем замечательном «исчислении» смысл имеют не только суммы, но и произведения размерностей. Разумеется, это правило имеет исключения, аналогичные тем, которые являются исключениями из правила о сложении коразмерностей при пересечении. Линейная пыль Леви в роли субординатора Линейная пыль Леви из главы 31 была первым субординатором у Бохнера, и с тех пор чистая математика использует ее в качестве субординатора настолько широко, что соответствующую лестницу Леви часто называют устойчивой субординаторной функцией. Для получения подобных субординаторных множеств применяется самоподобный субординанд – такой, как броуновское или дробное броуновское движение. Заметим, что, хотя для броуновского движения характерна размерность 2, броуновское движение, ограниченное прямой, имеет размерность 1. Следовательно, правило из предыдущего раздела принимает несколько иной вид
В общем случае для дробного броуновского движения характерна размерность
Таким образом, размерность Броуновское движение в роли субординанда. Наиболее значительным субординандом является броуновский след. Броуновское отображение моментов времени, ограниченных линейной пылью Леви с размерностью Учитывая, что и паузы пыли – субординатора, и приращения субординанда статистически независимы, можно предположить, что приращения процесса субординации также статистически независимы. А учитывая, что длины пауз субординатора удовлетворяют соотношению Упорядоченные скопления галактик Из формулы Размерности. Сама пыль имеет размерность Корреляции. След Леви способен линейно упорядочивать порождаемые им галактики; при этом каждая галактика взаимодействует только со своими непосредственными соседями. Каждая же пара соседей ведет себя независимо от других пар. В этом смысле полет Леви сродни ничем не оправданной замене нерешаемой задачи Рис. 409. В роли художника – ошибка в программе, опус 2 Авторство этой иллюстрации можно частично приписать ошибочному программированию. Ошибку вовремя распознали и исправили (после сохранения результата, разумеется!); конечным результатом вы можете полюбоваться на рис. 105. Изменения, явившиеся результатом пустяковой ошибки в критическом месте, далеко превзошли наши наихудшие опасения. Очевидно, что по замыслу в «правильном рисунке 105 должен был наличествовать весьма строгий порядок. Здесь этот порядок оказался скрыт от глаз, причем никакого другого порядка также не наблюдается. То, что эта иллюстрация – по крайней мере, на первый взгляд – вполне может сойти за произведение высокого искусства, явно не случайно. Свои соображения на этот счет я вкратце высказал в [399] и намерен изложить их в полном виде в самом ближайшем будущем. Рис. 410 и 411. Скопления галактик согласно ранней модели Мандельброта (размерность Полет Леви в грубом виде можно представить как последовательность скачков, разделенных остановками. Непосредственный интерес для нас в рамках этой главы представляют последние, однако и скачки являются необходимым элементом построения. Например, изображенный на верхних (черных на белом) рисунках след движения включает в себя и «инверсионный след», оставляемый летящей ракетой. Трехмерный след показан с помощью двух его проекций на перпендикулярные плоскости. Оригинал можно представить, расположив страницы книги перпендикулярно друг другу. Нижние рисунки (белые на черном) получены из верхних – в процессе исчезли отрезки, представляющие траектории скачков, а изображение было преобразовано в собственный негатив. Каждая промежуточная остановка символизирует собой звезду, галактику, либо просто некий обобщенный сгусток материи. Говоря точнее, прямолинейные отрезки на верхних (черные на белом) рисунках имеют следующую особенность: их направление в пространстве случайно и изотропно (т.е. параллельно вектору, соединяющему начало пространственных координат с некоторой точкой, выбранной наугад на поверхности сферы). Различные отрезки статистически независимы, а их длины следуют распределению вероятностей Подавляющее большинство отрезков слишком малы, чтобы их можно было разглядеть. На самом деле мы просто накрыли плоскость однородной решеткой и отметили те ячейки, на которые приходились одна или более остановок. Иными словами, каждая точка представляет собой целый миникластер. Кроме того, сами миникластеры также собираются в скопления, причем независимо от значения Для дальнейшего развития темы следует упомянуть и о том, что на всех иллюстрациях в данной подборке представлены начала двух различных полетов, прямого и обратного, и что эти полеты суть не что иное, как две статистически независимые копии одного процесса. Если переместить начало координат в точку какой-либо другой остановки, то и новые половины процесса будут, по всей видимости, независимыми. Следовательно, все промежуточные остановки обладают абсолютно равными правами на звание Центра Мироздания. Эта особенность составляет сущность условного космографического принципа, провозглашаемого мною в настоящем эссе. Рассматриваемый метод никоим образом не предназначен для объяснения действительного способа образования галактик, однако вполне справляется с продвижением моей основной идеи, заключающейся в том, что условный космографический принцип ничуть не противоречит явной иерархической кластеризации. Можно предложить очень много подобных конфигураций, причем самых разнообразных, пусть даже ни одна из них не окажется «сшита по мерке». Рис. 412. Неслучайная субординация: кластеризованная фрактальная пыль с размерностью Метод рекурсии, лежащий в основе построения кривой Коха, можно модифицировать так, чтобы кривая систематически терпела разрыв, в результате чего мы получим пыль, обладающую той же размерностью, что и исходная кривая Представьте себе резиновую ленту, первоначально соединяющую концы интервала Такой способ построения, по сути дела, позволяет нам заранее пометить все те звенья генератора, которые затем, на следующем этапе кохова построения, будут удалены. В тексте главы этот процесс называется субординацией. В итоге остаются лишь те точки, в которых оказывается движение Коха в моменты времени, принадлежащие некоторому подмножеству с фрактальной размерностью Заметим, что все точки изображенной здесь пыли неизменно упорядочены вдоль кривой Коха, подмножеством которой и является наш генератор. Кроме того, нетрудно найти частотное распределение длин, до которых сокращаются резиновые отрезки, между последовательно расположенными точками закрепления. Количество длин Рис. 414. Понижение размерности Степень кластеризации плоской пыли Леви зависит от ее размерности Лестницы Леви в правых нижних углах рисунков показывают, какую децимацию пришлось перенести временнóму параметру, чтобы мы могли получить соответствующую пыль из пыли с размерностью Рис. 415. Пыль Леви с размерностью Первый рисунок (вверху слева) представляет собой вид из квадратного иллюминатора отдаленного космического корабля на звездное скопление, состоящее из 12 500 000 промежуточных остановок движения Леви. Переход к следующему по часовой стрелке виду символизирует уменьшение расстояния от корабля до центра скопления в Рис. 416. Круговой облет скоплений Леви с размерностью Форма скоплений, образованных из остановок полета Леви в плоскости, очень сильно зависит от условий выборки, т.е. при построении большого количества моделей скоплений (пусть и с одинаковой размерностью) следует ожидать не меньшего разнообразия форм. То же верно и для малого изолированного пространственного скопления Леви при рассмотрении его с различных сторон, что демонстрируют представленные здесь иллюстрации (начиная с верхней левой и далее по часовой стрелке).
|