3.4.3. Решение уравнения Винера-Хопфа в циклическом приближенииВернемся к задаче некаузальной фильтрации шума на изображении. Оптимальный линейный фильтр определяется и в этом случае уравнением Винера-Хопфа (3.6), в котором для начала область существования
Дискретный винеровский фильтр удается легко найти в циклическом приближении. Для этого требуется вместо реальных функций
Периодичность функций, входящих в уравнение (3.32), позволяет применить к его обеим частям двумерное ДПФ, подобно тому, как это было сделано выше применительно к уравнению (3.27). В результате получаем:
В этом выражении
Найденное решение дает эффективный способ осуществления оптимальной линейной фильтрации изображения. Его выполнение требует знания спектральных плотностей мощности и опирается на применение к обрабатываемому изображению дискретного преобразования Фурье. Не следует, однако, забывать, что переход от уравнения (3.31), определяющего истинно оптимальную характеристику фильтра, к уравнению (3.32), позволяющему найти ее периодически продолженный аналог, был выполнен без достаточного обоснования. Поэтому ничего нельзя пока сказать о том, в какой степени найденное решение близко к истинно оптимальному. Для ответа на этот вопрос рассмотрим снова для простоты одномерные аналоги уравнений (3.31) и (3.32), имеющие вид:
Рис. 3.6 иллюстрирует формирование сумм, входящих в правые части этих равенств при некотором произвольном значении сдвига
Если же интервал На рис. 3.7 приведен пример работы фильтра Винера. Как и ранее эксперимент выполнен при отношении сигнал/шум оценка результата. Хотя нельзя не отметить, что это достигается ценой большей, чем при других методах, дефокусировки изображения. В этом проявляется общее диалектическое противоречие между борьбой с помехами и динамическими искажениями обрабатываемого изображения, свойственное, как отмечалось и ранее, всем методам фильтрации.
Проведение обработки изображений при помощи фильтра Винера требует использования спектральной плотности мощности изображения. Существуют различные способы получения необходимой информации. Один из них основан на предварительном измерении требуемых характеристик по реальному изображению. Полученные при этом спектральные плотности вводятся в ЭВМ в виде таблиц, позволяя задать коэффициент передачи в численном виде. Другой способ, примененный и в представленном эксперименте, состоит в использовании некоторой математической модели изображения, вид спектрально-корреляционных характеристик которой известен. В этом случае реальное изображение используется для измерения только отдельных параметров, входящих в используемую математическую модель. При проведении эксперимента, описанного выше , в частности, использовалась модель изображения в виде гауссовского двумерного поля с корреляционной функцией (3.17), а измерялись коэффициент одношаговой корреляции Анализ эффективности метода будет неполным, если не сделать оценки вычислительной эффективности реализующей его процедуры. Для вычисления ДПФ разработаны эффективные вычислительные методы, воплощенные в процедурах быстрого преобразования Фурье (БПФ). Количество комплексных умножений, составляющих основную трудоемкость двумерного БПФ, оценивают числом
|