5.3.3. Кросс-спектральная мера сходстваЗдесь мы разовьем далее охарактеризованный метод решения задачи привязки. Для этого будем исходить из исследования обобщенной кросс-спектральной меры сходства. Для единообразия запишем матрицу эталонного фрагмента в левом верхнем углу нулевой матрицы порядка Поскольку при смещении «образца» то будем минимизировать функционал
по параметрам сдвига
Точность локализации определяется крутизной данной кросс-спектральной функции вблизи экстремума, характеризующего положение образа эталонного фрагмента. С этой точки зрения наилучшей моделью для
так как в этом случае обратное дискретное фурье-преобразование Полученный результат можно интерпретировать следующим образом. Обнаружитель с передаточной функцией (5.34) представляет собой «фазовый» фильтр, т.е. фильтр, который фазовую часть комплексного спектра изображений оставляет без изменений, а амплитудный спектр нормализует. Нетрудно усмотреть, что в данном варианте кросс-спектральная мера Тем самым можно отнести все признаки оптимальности когерентного функционала [5.6] и к кросс-спектральной мере сходства, допускающей к тому же эффективную реализацию на основе быстрого преобразования Фурье. a) б) Рис.5.12. Меры эффективности алгоритмов идентификации сходства: а - поведение кросс-спектральной меры сходства вблизи ее экстремума: 1 - отклик фазового фильтра, 2 - отклик корреляционного обнаружителя; б - оценки вероятностей ложной привязки (ВЛП) в зависимости от отношения амплитуды шума Следует отметить, что выражение (5.33) при Анализ результатов имитационных экспериментов показал [5.7], что аналогичные выводы справедливы и для когерентного (фазового) алгоритма. Однако рабочая зона идентификации фазового фильтра (по величине допустимых геометрических искажений) меньше аналогичной зоны для корреляционного алгоритма. Это и понятно, так как чем меньше эффективный радиус кросскорреляционной функции сходства
Рис.5.13.Радиолокационные изображения местности, снятые при двух пролетах самолета (разные ракурсы съемки)
|