§ 3. Основное состояниеЭнергия вакуума. Состояние электромагнитного поля с наинизшей возможной энергией, которое мы будем называть основным или вакуумным, - это состояние, в котором у всех осцилляторов все В нашем случае (для вакуумного состояния) эта трудность легко устранима. Предположим, что при измерении энергии мы выбираем различные начала отсчета. Так как постоянная добавка ко всем энергиям не приводит ни к каким физическим эффектам, то произвольный выбор нулевого значения энергии не будет влиять на результаты любого проводимого нами эксперимента. Поэтому мы положим энергию вакуумного состояния равной нулю. Тогда полная энергия произвольного состояния электромагнитного поля определится формулой
где суммирование проводится по всем модам поля. К сожалению, в реальном случае нельзя отсчитывать энергию от совершенно произвольного значения. Энергия эквивалентна массе, а с массой связана гравитация. Даже на свет действуют гравитационные силы (например, луч света отклоняется притяжением Солнца). Следовательно, если закон равенства действия противодействию справедлив хотя бы качественно, то и Солнце должно притягиваться фотонами, а это значит, что с каждым фотоном, энергия которого равна Так как большая часть пространства - вакуум, то эффект, обусловленный вакуумной энергией электромагнитного поля, был бы значителен. Мы можем оценить его величину. Предварительно заметим, что в квантовой электродинамике встречается еще одна расходимость, отличная от рассматриваемой и устраняемая при помощи специального предположения, называемого правилом обрезания. Согласно этому правилу, моды с очень большими частотами (т. е. с очень малыми длинами волн) должны исключаться из рассмотрения. Мы действительно не знаем, выполняются ли законы электродинамики для длин волн, существенно меньших, чем наблюдаемые в настоящее время. К тому же сейчас есть достаточно оснований полагать, что эти законы нельзя распространить на всю коротковолновую область. Математические выражения, которые довольно хорошо применимы при больших длинах волн, приводят к расходимостям в коротковолновой области. Предельные длины доступных нам сейчас волн имеют порядок комнтоновской длины волны протона: Возвращаясь к нашей оценке, допустим, что мы суммируем по всем волновым числам, меньшим некоторого предельного значения
(заметим, что множитель 2 появился вследствие того, что каждому значению
Можно было бы ожидать (по крайней мере так кажется на первый взгляд), что при такой плотности гравитационные эффекты велики, чего в действительности не наблюдается. Возможно, что наш расчет слишком упрощенный, и если бы мы использовали все выводы общей теории относительности (такие, например, как гравитационные эффекты, обусловленные большими давлениями, которые здесь подразумеваются), гравитационные эффекты могли бы исчезнуть, однако все это никем еще не проделано. Возможно, найдется такое правило обрезания, которое не только даст конечную плотность энергии вакуумного состояния, но и позволит сделать это релятивистски-инвариантным образом. Сейчас совершенно не ясно, к чему все это приведет. Поэтому будем пока просто считать плотность энергии вакуумного состояния равной нулю. До сих пор не было ни одного эксперимента, который противоречил бы такому допущению. При дальнейшем изучении квантовой электродинамики нам встретятся интегралы с расходимостями других типов, причем устранение будет значительно сложнее.
Волновая функция вакуумного состояния. Волновая функция совокупности осцилляторов представляется в виде произведения всех волновых функций всех мод. Волновая функция основного состояния осциллятора, соответствующего фотону с поляризацией 1 и волновым числом
Задача 9.6. Покажите, используя синусоидальные и косинусоидальные моды с действительными переменными, что последнее выражение, в которое входят комплексные переменные, действительно является справедливым (ср. задачу 8.4). Задача 9.7. Покажите, что для вакуумного состояния среднее значение величины Задача 9.8. Если состояние определяется единственным фотоном, который находится в состоянии
|