Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 21. Разность потенциалов (электрическое напряжение).

Выберем в электрическом поле, например в поле между положительно заряженной пластинкой и отрицательно заряженным шариком, две какие-либо точки 1 и 2 (рис. 39) и перенесем положительный заряд  по произвольному пути 1-3-2 из точки 1 в точку 2. Мы уже знаем (§ 20), что работа, совершаемая электрическими силами при движении заряда, не зависит от формы пути, по которому перемещается заряд. Поэтому работа на пути 1-3-2 будет такая же, как и на пути 1-4-2, и вообще на любом пути, проведенном между точками 1 и 2. Так как сила, действующая на заряд , пропорциональна этому заряду (§ 14), то и работа на каждом отрезке пути, а следовательно, и полная работа  будут также пропорциональны . Поэтому для заданного поля отношение  для всех зарядов будет иметь одно и то же значение и, следовательно, может служить характеристикой поля. Эта величина играет важную роль в физике и электротехнике; она получила название разности электрических потенциалов или электрического напряжения между точками 1 и 2. Таким образом, разность потенциалов (или электрическое напряжение) между точками 1 и 2 есть отношение работы, которую совершают электрические силы при перемещении заряда из точки 1 в точку 2, к этому заряду.

52.jpg

Рис. 39. К понятию разности потенциалов

Если обозначить через  электрическую разность потенциалов между точками 1 и 2, то работа, совершаемая электрическими силами при переходе заряда  из точки 1 в точку 2, выразится формулой

.                   (21.1)

И работа , и заряд  в формуле (21.1) могут быть как положительными, так и отрицательными. Поэтому разность потенциалов  является алгебраической величиной. Она положительна, если силы поля совершают над положительным зарядом при переходе его из точки 1 в точку 2 положительную работу (или над отрицательным зарядом – отрицательную работу). Разность потенциалов  отрицательна, если при переходе положительного заряда из точки 1 в точку 2 силы поля совершают над ним отрицательную работу (или над отрицательным зарядом – положительную работу).

Из формулы (21.1) следует, что модуль и знак разности потенциалов  совпадают с модулем и знаком работы, совершаемой силами поля над единичным положительным зарядом при перемещении его из точки 1 в точку 2. Очевидно, что

.                (21.2)

В СИ единица разности потенциалов получила название вольт (В). Согласно (21.1), один вольт есть такая разность потенциалов (или такое напряжение) между двумя точками, при которой перемещение между этими точками положительного заряда, равного одному кулону, сопровождается совершением над ним силами электрического поля работы, равной одному джоулю:

.

Из определения разности потенциалов следует (рис. 39)

, .                    (21.3)

Применяя эти соотношения, нужно внимательно следить за знаками. Если, например,  В, а  В, то  В. Если  В, а  В, то  В и т. п.

Из сказанного выше ясно, что физический смысл имеет только разность потенциалов (или напряжение) между двумя какими-либо точками в электрическом поле, так как работа по переносу заряда в поле определена только тогда, когда заданы и начало и конец этого пути переноса. Поэтому, когда мы говорим об электрическом напряжении, то всегда имеем в виду две точки, между которыми существует это напряжение. Когда по некоторой небрежности речи говорят о напряжении или потенциале в одной какой-либо точке, то всегда подразумевают разность потенциалов между этой точкой и какой-то другой, выбранной заранее.

Иногда условно приписывают какой-либо точке поля, от которой отсчитывают разности потенциалов для всех других точек, потенциал, равный нулю, а каждой другой точке поля приписывают потенциал, равный разности потенциалов поля между данной точкой и «нулевой». Такое приписывание каждой точке поля определенного «потенциала» имеет совершенно условный характер. Оно аналогично тому условию, которым пользуются геодезисты при нивелировке местности, приписывая каждой точке на земной поверхности определенную «высоту» и разумея при этом его высоту над уровнем моря, который произвольно принимается за нуль для отсчета высот. Мы могли бы, однако, с таким же успехом отсчитывать все высоты не от уровня моря, а от любой иной точки, например от восточной вершины Эльбруса. Уровню моря соответствовала бы при этом высота, равная  км, а высоты всех пунктов на земле уменьшились бы на столько же, но это не имело бы никакого значения, ибо реальное физическое значение имеет только разность высот двух точек, которая, конечно, остается прежней.

Точно так же, выбрав для отсчета разностей потенциалов иную «нулевую» точку, мы получили бы для точки, значение потенциала которой ранее принималось равным нулю, какое-то иное значение, скажем +100 В (или -30 В). Все значения «потенциала» в отдельных точках поля увеличились бы тоже на 100 В (или уменьшились на 30 В), но это не имело бы никакого значения, ибо разность потенциалов между любыми точками осталась бы прежней, а, как мы подчеркивали выше, реальный физический смысл имеет только разность потенциалов (или напряжение) между двумя точками.

Конечно, удобство измерения требует, чтобы потенциал избранной точки во все время измерения оставался неизменным; иначе отсчитанные от этой точки значения потенциалов других точек поля были бы несравнимы между собой, что крайне затруднило бы пользование этим способом характеристики поля. Положение было бы столь же неудобным, как положение геодезиста, который при нивелировке принял бы за нуль высоты высоту движущегося воздушного шара.

 



<< ПредыдущаяОглавлениеСледующая >>