15. Стандарт сжатия JPEGАлгоритм разработан группой экспертов в области фотографии (Joint Photographic Expert Group) специально для сжатия 24-битных и полутоновых изображений в 1991 году. Этот алгоритм не очень хорошо сжимает двухуровневые изображении, но он прекрасно обрабатывает изображения с непрерывными тонами, в которых близкие пикселы обычно имеют схожие цвета. Обычно глаз не в состоянии заметить какой-либо разницы при сжатии этим методом в 10 или 20 раз. Алгоритм основан на ДКП, применяемом к матрице непересекающихся блоков изображения, размером 8х8 пикселей. ДКП раскладывает эти блоки по амплитудам некоторых частот. В результате, получается матрица, в которой многие коэффициенты, как правило, близки к нулю, которые можно представить в грубой числовой форме, т.е. в квантованном виде без существенной потери в качестве восстановления. Рассмотрим работу алгоритма подробнее. Предположим, что сжимается полноцветное 24-битное изображение. В этом случае получаем следующие этапы работы. Шаг 1. Переводим изображение из пространства RGB в пространство YCbCr с помощью следующего выражения: . Отметим сразу, что обратное преобразование легко получается путем умножения обратной матрицы на вектор , который по существу является пространством YUV: . Шаг 2. Разбиваем исходное изображение на матрицы 8х8. Формируем из каждой три рабочие матрицы ДКП – по 8 бит отдельно для каждой компоненты. При больших степенях сжатия блок 8х8 раскладывается на компоненты YCbCr в формате 4:2:0, т.е. компоненты для Cb и Cr берутся через точку по строкам и столбцам. Шаг 3. Применение ДКП к блокам изображения 8х8 пикселей. Формально прямое ДКП для блока 8х8 можно записать в виде , где . Так как ДКП является «сердцем» алгоритма JPEG, то желательно на практике вычислять его как можно быстрее. Простым подходом для ускорения вычислений является заблаговременное вычисление функций косинуса и сведения результатов вычисления в таблицу. Мало того, учитывая ортогональность функций косинусов с разными частотами, вышеприведенную формулу можно записать в виде . Здесь является матрицей, размером 8х8 элементов, описывающая 8-ми мерное пространство, для представления столбцов блока в этом пространстве. Матрица является транспонированной матрицей и делает то же самое, но для строк блока . В результате получается разделимое преобразование, которое в матричном виде записывается как . Здесь - результат ДКП, для вычисления которого требуется операций умножения и почти столько же сложений, что существенно меньше прямых вычислений по формуле выше. Например, для преобразования изображения размером 512х512 пикселей потребуется арифметических операций. Учитывая 3 яркостных компоненты, получаем значение 12 582 912 арифметических операций. Количество умножений и сложений можно еще больше сократить, если воспользоваться алгоритмом быстрого преобразования Фурье. В результате для преобразования одного блока 8х8 нужно будет сделать 54 умножений, 468 сложений и битовых сдвигов. В результате ДКП получаем матрицу , в которой коэффициенты в левом верхнем углу соответствуют низкочастотной составляющей изображения, а в правом нижнем – высокочастотной. Шаг 4. Квантование. На этом шаге происходит отбрасывание части информации. Здесь каждое число из матрицы делится на специальное число из «таблицы квантования», а результат округляется до ближайшего целого: . Причем для каждой матрицы Y, Cb и Cr можно задавать свои таблицы квантования. Стандарт JPEG даже допускает использование собственных таблиц квантования, которые, однако, необходимо будет передавать декодеру вместе со сжатыми данными, что увеличит общий размер файла. Понятно, что пользователю сложно самостоятельно подобрать 64 коэффициента, поэтому стандарт JPEG использует два подхода для матриц квантования. Первый заключается в том, что в стандарт JPEG включены две рекомендуемые таблицы квантования: одна для яркости, вторая для цветности. Эти таблицы представлены ниже. Второй подход заключается в синтезе (вычислении на лету) таблицы квантовании, зависящей от одного параметра , который задается пользователем. Сама таблица строится по формуле .
светимость цветность Рекомендуемые таблицы квантования На этапе квантования осуществляется управление степенью сжатия, и происходят самые большие потери. Понятно, что задавая таблицы квантования с большими коэффициентами, мы получим больше нулей и, следовательно, большую степень сжатия. С квантованием связаны и специфические эффекты алгоритма. При больших значениях шага квантования потери могут быть настолько велики, что изображение распадется на квадраты однотонные 8х8. В свою очередь потери в высоких частотах могут проявиться в так называемом «эффекте Гиббса», когда вокруг контуров с резким переходом цвета образуется волнообразный «нимб». Шаг 5. Переводим матрицу 8х8 в 64-элементный вектор при помощи «зигзаг»-сканирования (рис. 2). Рис. 2. «Зигзаг»-сканирование В результате в начале вектора, как правило, будут записываться ненулевые коэффициенты, а в конце образовываться цепочки из нулей. Шаг 6. Преобразовываем вектор с помощью модифицированного алгоритма RLE, на выходе которого получаем пары типа (пропустить, число), где «пропустить» является счетчиком пропускаемых нулей, а «число» - значение, которое необходимо поставить в следующую ячейку. Например, вектор 1118 3 0 0 0 -2 0 0 0 0 1 … будет свернут в пары (0, 1118) (0,3) (3,-2) (4,1) … . Следует отметить, что первое число преобразованной компоненты , по существу, равно средней яркости блока 8х8 и носит название DC-коэффициента. Аналогично для всех блоков изображения. Это обстоятельство наводит на мысль, что коэффициенты DC можно эффективно сжать, если запоминать не их абсолютные значения, а относительные в виде разности между DC коэффициентом текущего блока и DC коэффициентом предыдущего блока, а первый коэффициент запомнить так, как он есть. При этом упорядочение коэффициентов DC можно сделать, например, так (рис. 3). Остальные коэффициенты, которые называются AC-коэффициентами сохраняются без изменений. Шаг 7. Свертываем получившиеся пары с помощью неравномерных кодов Хаффмана с фиксированной таблицей. Причем для DC и AC коэффициентов используются разные коды, т.е. разные таблицы с кодами Хаффмана. Рис. 3. Схема упорядочения DC коэффициентов Рис. 4. Структурная схема алгоритма JPEG Процесс восстановления изображения в этом алгоритме полностью симметричен. Метод позволяет сжимать изображения в 10-15 раз без заметных визуальных потерь. При разработке данного стандарта руководствовались тем, что данный алгоритм должен был сжимать изображения довольно быстро – не более минуты на среднем изображении. Это в 1991 году! А его аппаратная реализация должна быть относительно простой и дешевой. При этом алгоритм должен был быть симметричным по времени работы. Выполнение последнего требования сделало возможным появление цифровых фотоаппаратов, снимающие 24 битные изображения. Если бы алгоритм был несимметричен, было бы неприятно долго ждать, пока аппарат «перезарядится» - сожмет изображение. Хотя алгоритм JPEG и является стандартом ISO, формат его файлов не был зафиксирован. Пользуясь этим, производители создают свои, несовместимые между собой форматы, и, следовательно, могут изменить алгоритм. Так, внутренние таблицы алгоритма, рекомендованные ISO, заменяются ими на свои собственные. Встречаются также варианты JPEG для специфических приложений.
|