3.3. Критерий Неймана-Пирсона Одним из существенных недостатков байесовского правила обнаружения сигналов является большое количество априорной информации о потерях и вероятностях состоянии объекта, которая должна быть в распоряжении наблюдателя. Этот недостаток наиболее отчетливо проявляется при анализе радиолокационных задач обнаружения цепи, когда указать априорные вероятности наличия цели в заданной области пространства и потери за счет ложной тревоги или пропуска цели оказывается весьма затруднительным. Поэтому в подобных задачах вместо байесовского критерия обычно используется критерий Неймана-Пирсона. Согласно этому критерию выбирается такое правило обнаружения, которое обеспечивает минимальную величину вероятности пропуска сигнала (максимальную вероятность правильного обнаружения) при условии, что вероятность ложной тревоги не превышает заданной величины
при дополнительном ограничении
Для поиска оптимальной процедуры обработки данных преобразуем задачу на условный экстремум (3.12) при условии (3.13) к задаче на безусловный экстремум. С этой целью воспользуемся методом множителей Лагранжа [27]. Введем множитель Лагранжа
После преобразований, аналогичных выводу формулы (3.5), соотношение (3.14) можно переписать в виде:
Сравнение полученного выражения с формулой (3.5) показывает, что минимум функции Лагранжа достигается, если в качестве критической области выбрать совокупность точек
При этом множитель Из сравнения (3.15) и (3.8) можно заключить, что оптимальное, в смысле критерия Неймана-Пирсона, правило обнаружения отличается от байесовского лишь величиной порогового уровня, с которым производится сравнение отношения правдоподобия. В качестве примера построения обнаружителя (3.15) рассмотрим задачу проверки гипотезы
при альтернативе
Такая задача возникает в тех случаях, когда появление полезного сигнала вызывает изменение среднего значения нормального шума на величину
После логарифмирования получаем следующий алгоритм обнаружения сигнала:
причем пороговый уровень
Поскольку сумма
|