II ТРИ КЛАССИЧЕСКИХ ФРАКТАЛА - СОВЕРШЕННО РУЧНЫЕ5 КАКОВА ПРОТЯЖЕННОСТЬ ПОБЕРЕЖЬЯ БРИТАНИИ?Прежде чем познакомиться с первым видом фракталов — а именно, с кривыми, фрактальная размерность которых превышает 1, — рассмотрим типичный участок какого-нибудь берега. Очевидно, что его длина не может быть меньше расстояния по прямой между его начальной и конечной точками. Однако, как правило, береговые линии имеют неправильную форму — они извилисты и изломаны, и их длины, вне всякого сомнения, значительно превышают расстояния между их крайними точками, измеренные по прямой. Известно много способов оценить длину береговой линии более точно, и в этой главе мы проанализируем некоторые из них. В конце концов мы придем к очень примечательному выводу: длина береговой линии — понятие весьма скользкое, и голыми руками его не ухватишь. Какой бы метод измерения мы ни применяли, результат всегда одинаков: длина типичного побережья очень велика и настолько нечетко определена, что удобнее всего считать ее бесконечной. Следовательно, если кому-нибудь вздумается сравнить различные берега с точки зрения их протяженности, ему придется подыскать что-нибудь взамен понятия длины, которое к данному случаю неприменимо. В этой главе мы как раз и займемся поисками подходящей замены, причем в процессе поисков нам не избежать знакомства с различными формами фрактальных концепций размерности, меры и кривой. АЛЬТЕРНАТИВНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ Метод А. Установим раствор измерительного циркуля на некоторую заданную длину Причина такого ее поведения очевидна: если рассмотреть какой-нибудь полуостров или бухту на картах масштаба 1/100 000 и 1/10 000, то на последней карте мы ясно различим более мелкие полуострова и бухты, которых не было видно на первой. Карта того же участка, выполненная в масштабе 1/1000, покажет нам еще более мелкие полуостровки и бухточки, и так далее. Каждая новая деталь увеличивает общую длину берега. Вышеописанная процедура подразумевает, что линия берега имеет слишком неправильную форму, и поэтому ее длина не может быть непосредственно представлена в виде суммы длин простых геометрических кривых, значения длин которых можно найти в справочниках. То есть, Метод А заменяет береговую линию на последовательность ломаных линий, составленных из прямолинейных участков, длину которых мы определять умеем. Метод В. Такого же «сглаживания» можно добиться и другими способами. Вообразите себе человека, проходящего вдоль берега по кратчайшему пути, траектория которого нигде не отходит от воды далее чем на заданное расстояние Метод С. Метод В подразумевает определенную асимметричность между водой и берегом. Для того, чтобы избежать этой асимметричности, Кантор предложил рассматривать береговую линию словно бы через расфокусированный объектив, вследствие чего каждая точка превращается в круглое пятно радиуса Метод D. Вообразите себе карту, выполненную в манере худож- ников-пуантилистов, т. е. такую, где материки и океаны изображены цветными круглыми пятнами радиуса ПРОИЗВОЛЬНОСТЬ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ Резюмируя предыдущий раздел, заметим, что результат применения любого из четырех методов всегда один и тот же. По мере уменьшения е приблизительная длина кривой устремляется в бесконечность. Для того, чтобы в должной мере уяснить значение этого факта, произведем аналогичное измерение длины какой-либо обыкновенной евклидовой кривой. Например, на отрезке прямой приблизительные оценочные данные измерения в основном совпадают и определяют искомую длину. В случае окружности приблизительное значение длины возрастает, но довольно быстро устремляется к некоторому конкретному пределу. Кривые, длину которых можно определить таким образом, называются спрямляемыми. Еще более поучительно попробовать измерить длину какой-нибудь из береговых линий, одомашненных человеком, — скажем, побережья вблизи Челси в его сегодняшнем виде. Поскольку очень большие складки местности человек пока оставляет без изменений, установим на нашем циркуле очень большой раствор Однако здесь имеется одна интересная особенность: при дальнейшем уменьшении Очевидно, что измерения, произведенные в этой плоской зоне, обладают огромной практической ценностью. Поскольку границы между различными научными дисциплинами являются, в основном, результатом договоренности между учеными о разделении труда, мы можем, например, передать все феномены, масштабы которых превышают 20 м, т. е. те, до которых человек еще не дотянулся, в ведомство географии. Такое ограничение даст нам вполне определенную географическую длину. Береговая охрана может с успехом использовать то же значение С другой стороны, мне трудно представить, что все заинтересованные правительственные учреждения пусть даже какой-либо одной страны договорятся между собой об использовании единого значения Второй и более значительный довод против выбора произвольного ПРИЗНАНИЕ И ЗНАЧЕНИЕ ПРОИЗВОЛЬНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ Несомненно, многие придерживаются мнения, что береговые линии представляют собой неспрямляемые кривые, и я, если уж на то пошло, не могу припомнить, чтобы кто-нибудь считал иначе. Однако мои поиски письменных свидетельств в пользу этого мнения потерпели почти полный провал. Помимо цитат из Перрена, приведенных во второй главе, имеется еще вот такое наблюдение в статье Штейнгауза [539]: «Измеряя длину левого берега Вислы с возрастающей точностью, можно получить значения в десятки, сотни и даже тысячи раз большие, чем то, что дает школьная карта... Весьма близким к реальности представляется следующее заявление: большинство встречающихся в природе дуг не являются спрямляемыми. Это заявление противоречит распространенному мнению, сводящемуся к тому, что неспрямляемые дуги — математическая фикция, а в природе все дуги спрямляемы. Из этих двух противоречивых заявлений верным, по всей видимости, следует считать все же первое». Однако ни Перрен, ни Штейнгауз так и не удосужились разработать свои догадки подробнее и довести их до логического конца. К. Фадиман рассказывает одну занятную историю. Его друг Эдвард Каснер несколько раз проводил такой эксперимент: он «спрашивал у маленьких детей, какова, по их мнению, общая длина побережья Соединенных Штатов. После того, как кто-то из детей высказывал достаточно «разумное» предположение,... Каснер... предлагал им подумать о том, насколько можно увеличить эту цифру, если очень тщательно измерить периметр всех мысов и бухт, затем так же тщательно проследить меньшие мыски и бухточки в каждом из этих мысов и в каждой из этих бухт, затем измерить каждый камешек и каждую песчинку из тех, что образуют береговую линию, каждую молекулу, каждый атом и т. д. Получалось, что берег может быть каким угодно длинным. Дети понимали это сразу, а вот со взрослыми у Каснера возникали проблемы.» История, конечно, очень мила, однако вряд ли она имеет отношение к моим поискам. Каснер явно не ставил перед собой цель выделить некий аспект реальности, достойный дальнейшего изучения. Таким образом, можно сказать, что статья [356] и книга, которую вы держите в руках, представляют собой по существу первые работы, посвященные этой теме. В своей книге «Воля верить»1 Уильям Джеймс пишет: «То, что не укладывается в рамки классификаций... всегда являет собой тучную ниву для великих открытий. В любой науке вокруг общепризнанных и упорядоченных фактов вечно кружит пыльное облако исключений из правил — явлений малозаметных, непостоянных, редко встречающихся, явлений, которые проще игнорировать, нежели рассматривать. Всякая наука стремится к идеальному состоянию замкнутой и строгой системы истин... Феномены, не подлежащие классификации в рамках системы, считаются парадоксальными нелепостями и заведомо не истинны. Ими пренебрегают и их отвергают, исходя из лучших побуждений научной совести... Тот, кто всерьез займется иррегулярными феноменами, окажется способен создать новую науку на фундаменте старой. По завершении же этого процесса правилами обновленной науки по большей части станут вчерашние исключения». Настоящее эссе, скромной целью которого является полное обновление геометрии Природы, описывает феномены, настолько не вписывающиеся в классификацию, что говорить о них можно лишь с позволения цензуры. С первым из таких феноменов вы встретитесь уже в следующем разделе. ЭФФЕКТ РИЧАРДСОНА Эмпирическое исследование изменения приблизительной длины Приведенные на рис. 57 графики, обнаруженные уже после смерти Ричардсона среди его бумаг, были опубликованы в чуть ли не секретном (и совершенно не подходящем для таких публикаций) «Ежегоднике по общим системам». Рассмотрев эти графики, мы приходим к заключению, что существуют две постоянные (назовем их
Значение показателя ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ [356] Изучив работу Ричардсона, я предположил [356], что хотя показатель Зачем математикам понадобилось вводить это изобилие различных размерностей? Затем, что в определенных случаях они принимают различные значения. К счастью, с такими случаями вы в этом эссе не встретитесь, поэтому список возможных альтернативных размерностей можно с чистой совестью сократить до двух, о которых я, правда, еще не упоминал. Старейшая и подробнее исследованная размерность из нашего списка восходит еще к Хаусдорфу и служит для определения фрактальной размерности — очень скоро мы ею займемся. Вторая, более простая, размерность называется размерностью подобия: она носит не такой общий характер, как первая размерность, однако оказывается более чем адекватной во многих случаях — ее мы рассмотрим в следующей главе. Разумеется, я не собираюсь приводить здесь математическое доказательство того, что показатель Ричардсона Следующий шаг — объяснение формы береговых линий и выведение значения ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ ХАУСДОРФА Если согласиться с тем, что различные естественные береговые линии обладают бесконечной длиной, а также с тем, что значение длины, основанное на антропометрической величине В высшей степени остроумный метод для достижения этой цели предложил Феликс Хаусдорф. В основе его метода лежит тот факт, что линейная мера многоугольника вычисляется сложением длин его сторон без каких бы то ни было их преобразований. Можно предположить, что эти длины сторон возводятся в степень Рассмотрим с таких позиций полигональную (кусочно-линейную) аппроксимацию береговой линии, составленной из малых интервалов длины Таким образом, теоретически аппроксимативная протяженность в размерности Кроме того, получает простое подтверждение и обобщение тот факт, что длина внутренней области квадрата бесконечна: аппроксимативная протяженность береговой линии, определенная при любой размерности ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ КРИВОЙ МОЖЕТ БЫТЬ БОЛЬШЕ ЕДИНИЦЫ; ФРАКТАЛЬНЫЕ КРИВЫЕ Согласно замыслу своего создателя, хаусдорфова размерность сохраняет за собой обязанности обычной размерности и служит показателем степени при определении меры. Однако с другой стороны, размерность Я предлагаю называть кривые, фрактальная размерность которых превосходит их топологическую размерность 1, фрактальными кривыми. А в качестве краткого резюме для настоящей главы могу предложить следующее утверждение: в географических масштабах береговые линии можно моделировать с помощью фрактальных кривых. Береговые линии по своей структуре фрактальны. Рис. 55. ОБЕЗЬЯНЬЕ ДЕРЕВО
На данном этапе этот небольшой рисунок следует рассматривать просто как декоративный элемент, он всего лишь заполняет пустое место. Однако после прочтения главы 14 читатель сможет обнаружить здесь подсказку для распутывания «архитектурной» загадки на рис. 210. Более серьезную подсказку дает нижеприведенный генератор: Если у математика возникает необходимость «приручить» какую-нибудь особенно нерегулярную кривую, он может воспользоваться следующей стандартной процедурой: выбирается некое значение На помещенных здесь иллюстрациях вышеописанное сглаживание применяется не к реальным берегам, а к одной теоретической кривой, которую мы построим несколько позже (см. рис. 79) путем постоянного добавления все более мелких деталей. Сравнивая изображенный справа кусок сосиски с правым концом сосиски, помещенной вверху, мы видим, что критический этап в построении кривой наступает, когда кривая начинает включать в себя детали меньшего, чем Рис. 57. ЭМПИРИЧЕСКИЕ ДАННЫЕ РИЧАРДСОНА ОТНОСИТЕЛЬНО СКОРОСТИ РОСТА ДЛИН БЕРЕГОВЫХ ЛИНИЙ На этом рисунке приведены экспериментальные результаты измерения длины кривой, произведенные на различных кривых с использованием равносторонних многоугольников с уменьшающейся длиной стороны В случае береговых линий приближенные значения длины, напротив, не стабилизируются вовсе. По мере того, как длина шага Ричардсон не дал никакой теоретической интерпретации различному наклону своих прямых. Мы же с вами намерены интерпретировать береговые линии как приближения к фрактальным кривым и рассматривать угловые коэффициенты соответствующих им прямых как приближенные значения разности
|