6 СНЕЖИНКИ И ДРУГИЕ КРИВЫЕ КОХАДля более полного понимания моей интерпретации ричардсонова САМОПОДОБИЕ И КАСКАДЫ До сих пор мы больше уделяли внимание геометрической сложности береговых линий; настало время упомянуть и о том, что их структура в значительной степени упорядочена. Хотя выполненные в разных масштабах карты и различаются в конкретных деталях, более общие их особенности остаются неизменными. В грубом приближении крупные детали береговых линий геометрически идентичны мелким, разница только в масштабе. Такую форму можно сравнить с узором, который рисует на небе какой-нибудь многоступенчатый фейерверк: на каждом этапе его сгорания в общую картину добавляются новые, все более мелкие детали, идентичные по форме результату исходного взрыва. Однако из упоминавшихся выше трудов Льюиса Ричардсона, посвященных турбулентности, мы можем позаимствовать более подходящее сравнение и назвать порождающий такие структуры механизм каскадом. Если каждая из частей некоторой формы геометрически подобна целому, то и форма, и порождающий ее каскад называются самоподобными. В настоящей главе мы займемся исследованием самоподобия, используя для этого самые что ни на есть правильные фигуры. Наиболее полную противоположность самоподобным формам представляют собой кривые, которые имеют либо только один масштаб (например, окружность), либо два четко разделенных масштаба (например, окружность, украшенная «гребнем» из множества меньших полуокружностей). Такие формы мы можем охарактеризовать как немасштабируемые. ТЕРАГОНЫ КАК МОДЕЛИ БЕРЕГОВЫХ ЛИНИЙ. ТРОИЧНАЯ КРИВАЯ КОХА Если мы хотим получить кривую, содержащую бесконечное число масштабов длины, то надежнее всего будет ввести их туда собственноручно, один за другим. Правильный треугольник с длиной стороны, равной 1, имеет один масштаб, правильные треугольники с длиной стороны, равной 1/3, также имеют один масштаб, только меньший — уменьшая длину стороны далее по правилу В сущности, мы предполагаем, что некоторый участок береговой линии, изображенный в масштабе 1/1 000 000, выглядит как прямой отрезок единичной длины; назовем такой участок инициатором. Затем мы предполагаем, что на карте масштаба 3/1000 000 становится видимой некая деталь, а именно, — выступ в форме равностороннего треугольника, занимающий среднюю треть исходного отрезка. Полученное таким образом второе приближение — ломаную, составленную из четырех отрезков равной длины — назовем генератором. Предположим далее, что еще более подробная карта (масштаба 9/1000 000) выглядит как результат замены каждого из четырех отрезков генератора уменьшенной в три раза копией этого самого генератора, т. е. из каждого выступа вырастает по два новых выступа той же формы, но меньшего размера. Продолжая в том же духе, мы заменяем все прямолинейные отрезки ломаными линиями, и первоначально прямой инициатор постепенно превращается во все более длинную ломаную кривую. Поскольку мы будем иметь дело с такими кривыми на всем протяжении этого эссе, предлагаю ввести для их обозначения новый термин терагоны (от греч. «чудовище, странное создание» и «угол»). Кстати, префикс тера обозначает (очень уместно, надо сказать) в метрической системе умножение на Если продолжить вышеописанный каскадный процесс до бесконечности, то наши терагоны устремятся к пределу, рассмотренному впервые фон Кохом [574] (см. рис. 74). Назовем такую кривую троичной кривой Коха и обозначим символом На рис. 71 хорошо видно, что площадь этой кривой обращается в нуль. С другой стороны, с каждой ступенью построения ее общая длина увеличивается в 4/3 раза, следовательно, в пределе длина кривой Коха бесконечна. Более того, кривая Коха непрерывна, но нигде не имеет касательной — точно график непрерывной функции, не имеющей производной. В качестве модели береговой линии кривая КРИВАЯ КОХА В РОЛИ ЧУДОВИЩА У человека, прочитавшего предыдущий раздел, может сложиться впечатление, что кривая Коха относится к числу наиболее очевидных и интуитивно понятных геометрических фигур. Однако вовсе не так очевидны причины, толкнувшие фон Коха на ее построение. И уж совершенно загадочным представляется отношение к ней со стороны математиков. Чуть ли не единодушно они провозгласили кривую Надо отдать Хану должное — в своих высказываниях он не доходит до знаменитого восклицания Шарля Эрмита относительно недифферен- цируемых функций. В письме к Стилтьесу, датированном 20 мая 1893 года, Эрмит пишет об ужасе и отвращении, которые вызывает у него «это наказание Господне, эти жалкие функции без производных» ([211], II, с. 318). Конечно же, каждому из нас хочется верить в то, что великие лишены недостатков и что Эрмит просто шутил, однако из написанной в 1922 году «Заметки» Лебега ([295], I), можно заключить, что это не совсем так. Написав статью о поверхностях, к которым нельзя построить касательные плоскости (об «абсолютно измятых носовых платках»), Лебег представил ее Академии наук для публикации, однако «Эрмит сначала воспротивился включению статьи в «Comptes Rendus»1; примерно к этому времени относится его письмо Стилтьесу... » Мы с вами уже знаем, что Перрен и Штейнгауз страха перед чудовищами не испытывали, однако единственным математиком, который возражал против общего мнения, основываясь именно на интуитивных соображениях (Штейнгауз возражал, опираясь на факты), был Поль Ле-ви [311]: «[Мне] всегда было удивительно слышать, что если руководствоваться в геометрии здравым смыслом, то непременно приходишь к выводу, что все непрерывные функции дифференцируемы. Насколько я могу судить по собственному опыту, начиная с моей первой встречи с концепцией производной и по сей день, верно как раз обратное». Как ни печально, эти голоса остались неуслышанными. Почти все книги и абсолютно все музеи науки продолжают уверять нас в том, что недифференцируемые функции противны здравому смыслу, «чудовищны», «патологичны» или даже «психопатичны». ПРИРУЧЕНИЕ КРИВОЙ КОХА. РАЗМЕРНОСТЬ Я утверждаю, что кривая Коха является грубой, но математически строгой моделью береговой линии. В качестве первой количественной проверки рассмотрим длину
Эта точная формула оказывается идентичной эмпирическому закону Ричардсона о длине побережья Британии. Для троичной кривой Коха имеем
откуда следует, что значение < Доказательство: Очевидно, что
Это уравнение имеет решение вида Следовательно, Разумеется, в случае кривой Коха показатель С другой стороны, аппроксимативная хаусдорфова протяженность в размерности РАЗМЕРНОСТЬ ПОДОБИЯ Оказывается, мы легко можем получить искомое более глубокое обоснование, рассмотрев случай самоподобных фигур и понятие размерности подобия. Мы часто слышим о том, что математики используют размерность подобия для приблизительного определения хаусдорфовой размерности, причем в большинстве случаев, рассматриваемых в этом эссе, такая приблизительная оценка оказывается верной. В применении к этим случаям мы вполне можем считать фрактальную размерность синонимом размерности подобия. < Аналогичным образом мы используем термин «топологическая размерность» как синоним обычной, «интуитивной», размерности. ► В качестве своего рода стимулирующего вступления давайте рассмотрим стандартные самоподобные формы: отрезки прямой, прямоугольники на плоскости и т. д. (см. рис. 73). Евклидова размерность прямой равна 1, следовательно, при любом целочисленном «основании» Евклидова размерность плоскости равна 2. Отсюда аналогичным образом следует, что при любом значении Где В случае прямоугольного параллелепипеда аналогичное рассуждение приводит нас к коэффициенту Не возникает никаких сложностей и с определением пространств, евклидова размерность
Таким образом,
Эквивалентные альтернативные выражения имеют следующий вид:
Перейдем теперь к нестандартным фигурам. Для того, чтобы показатель самоподобия имел формальный смысл, необходимо лишь, чтобы рассматриваемая фигура была самоподобной, т. е. чтобы ее можно было разбить на
В случае троичной кривой Коха КРИВЫЕ. ТОПОЛОГИЧЕСКАЯ РАЗМЕРНОСТЬ До сих пор мы, не особенно задумываясь, называли фигуру Коха Любой математик скажет вам, что все фигуры, обладающие вышеуказанным свойством (будь то кривая ИНТУИТИВНЫЙ СМЫСЛ РАЗМЕРНОСТИ D ПРИ НАЛИЧИИ ПОРОГОВ Одна из работ Чезаро [74] начинается с эпиграфа: «... безгранична воля, безграничны желания, несмотря на то, что силы наши ограничены, а осуществление мечты — в тисках возможности».1 В самом деле, тиски возможности властны над учеными в не меньшей степени, чем над шекспировскими Троилом и Крессидой. Для построения кривой Коха необходимо, чтобы каскад новых, с каждым разом уменьшающихся выступов уходил в бесконечность, однако в Природе всякий каскад обречен либо прекратиться, либо измениться. Мы, конечно, можем допустить существование бесконечной серии выступов, но охарактеризовать их как самоподобные можно только в определенных пределах. Когда длина уменьшается до значений, меньших нижнего предела, понятие береговой линии перестает принадлежать географии. Таким образом, представляется разумным рассматривать реальную береговую линию как кривую, включающую в себя два пороговых масштаба. Внешним порогом И все же даже после того, как мы отбросили самые крупные и самые мелкие детали, величина Что же касается береговой линии, то она, вероятнее всего, имеет несколько различных размерностей (вспомните клубок ниток из третьей главы). Ее географической размерностью является показатель Ричардсона АЛЬТЕРНАТИВНЫЕ ГЕНЕРАТОРЫ КОХА И КРИВЫЕ КОХА БЕЗ САМОПЕРЕСЕЧЕНИЙ Сформулируем еще раз основной принцип построения троичной кривой Коха. Построение начинается с двух фигур: инициатора и генератора. Последний представляет собой ориентированную ломаную, состоящую из Нетрудно изменить общий вид получаемой конструкции путем модификации генератора; особенно интересны сочетания выступов и впадин — примеры можно найти на следующих после главы иллюстрациях. Таким образом, можно получить различные терагоны Коха, сходящиеся к кривым, размерности которых находятся в интервале от 1 до 2. Все эти кривые Коха нигде не пересекают сами себя, поэтому при определении Если же попытаться получить с помощью вышеописанного построения кривую Коха с размерностью больше 2, то мы неизбежно придем к кривым, которые покрывают плоскость бесконечно много раз. Случай ДУГИ И ПОЛУПРЯМЫЕ КОХА В некоторых случаях возникает необходимость в педантичной замене термина «кривая Коха» чем-нибудь более точным и подходящим. Например, фигура, изображенная на рис. 73 внизу, формально является коховым отображением отрезка прямой и может быть названа дугой Коха. Как следствие, граничная линия на рис. 74 оказывается составленной из трех дуг Коха. Часто бывает полезно экстраполировать дугу в полупрямую Коха — экстраполяция увеличивает исходную дугу сначала в ЗАВИСИМОСТЬ МЕРЫ ОТ РАДИУСА ПРИ ДРОБНОМ ЗНАЧЕНИИ D Рассмотрим еще одну стандартную ситуацию евклидовой геометрии и обобщим ее с учетом фрактальных размерностей. В случае идеальных однородных физических объектов плотности Правило В случае троичных кривых Коха это утверждение доказывается проще всего, если начало координат совпадает с концевой точкой полупрямой Коха. Если круг радиуса
Следовательно, отношение ДВИЖЕНИЕ КОХА Представьте себе точку, движущуюся вдоль полупрямой Коха и проходящую за одинаковые интервалы времени дуги одинаковой меры. Если теперь обратить функцию, определяющую время как зависимость от положения точки, то мы получим функцию, определяющую положение точки как зависимость от времени, т. е. функцию движения. Скорость такого движения, разумеется, бесконечна. СЛУЧАЙНЫЕ БЕРЕГОВЫЕ ЛИНИИ: ПРЕДВАРИТЕЛЬНЫЙ ВЗГЛЯД Кривая Коха похожа на настоящие береговые линии, однако она имеет кое-какие существенные недостатки (эти недостатки практически в неизменном виде присущи всем ранним моделям рассматриваемых в настоящем эссе прецедентов). Ее части идентичны одна другой, а коэффициент само подобия Я разработал несколько способов избавления от этих недостатков, однако ни один из них не обходится без известных вероятностных усложнений, с которыми нам на данный момент не справиться: сначала следует уладить множество вопросов, касающихся неслучайных фракталов. Интересующемуся же читателю, знакомому с теорией вероятности, ничто не мешает заглянуть немного вперед и полюбоваться на модели, основанные на моих «сквиг-кривых» (см. главу 24) и, что более важно, на линиях уровня дробных броуновских поверхностей (см. главу 28). Здесь и далее я использую следующий способ представления материала. Многочисленные узоры, создаваемые Природой, рассматриваются на фоне упорядоченных фракталов, которые могут служить пусть и очень приблизительными, но все же моделями рассматриваемых феноменов, тогда как предлагаемые мною случайные модели отнесены в более поздние главы. Памятка. Во всех случаях, когда значение СЛОЖНОЕ ИЛИ ВСЕ ЖЕ ПРОСТОЕ И ПРАВИЛЬНОЕ? Кривые Коха демонстрируют новое и весьма интересное сочетание простоты и сложности. На первый взгляд они выглядят гораздо более сложными, чем любая стандартная евклидова кривая. Однако теория математических алгоритмов Колмогорова-Чайтина утверждает обратное: кривая Коха ничуть не сложнее окружности! Эта теория оперирует некоторым набором «букв» или «атомных операций», причем длина кратчайшего известного алгоритма построения искомой функции принимается за объективный верхний предел сложности этой функции. Попробуем применить вышеописанный подход к построению кривых. Условимся изображать буквы или «атомы» графического процесса прямыми «штрихами». При использовании такого алфавита построение правильного многоугольника требует конечного числа штрихов, каждый из которых можно описать с помощью конечного числа инструкций, и, как следствие, является задачей конечной сложности. В построении же окружности, напротив, участвует «бесконечное количество бесконечно коротких штрихов», и поэтому окружность представляется нам как кривая бесконечной сложности. Однако если производить построение окружности рекурсивно, можно видеть, что необходимо лишь конечное число инструкций, и значит построение окружности также является задачей конечной сложности. Начнем, например, с правильного многоугольника, число сторон которого равно Это необычное распределение кривых по относительной сложности их построения не следует принимать всерьез. Самое интересное, что, используя алфавит, основанный на окружности и линейке (т. е. взяв в качестве «атома» окружность), мы придем к противоположному выводу. И все же, при разумно подобранном алфавите, любая кривая Коха не только имеет конечную сложность, но оказывается проще большинства евклидовых кривых. Меня всегда зачаровывала этимология слов, и поэтому я не могу завершить эту главу, не сознавшись в том, что мне претит называть кривую Коха «неправильной». Этот термин родственен слову править и в принципе вполне приемлем, если понимать это слово как «делать правильным, выпрямлять»: кривую Коха вряд ли что-либо способно выпрямить. Однако вспоминая о другом смысле слова править и размышляя о правителях или королях (тот же смысл, но несколько иная этимология. Кстати, латинские слова rex («король») и regula («правило») также имеют один корень), т. е. о тех, кто устанавливает свод незыблемых правил, которым следует беспрекословно подчиняться, я всякий раз молча протестую против неудачного термина — в этом смысле в мире просто нет ничего «правильнее» кривой Коха. Рис. 70. ТРОИЧНЫЙ ОСТРОВ (ИЛИ СНЕЖИНКА) КОХА Начинается построение с «инициатора», т. е. с черного равностороннего треугольника, длина стороны которого равна единице. Затем в средней трети каждой из сторон строим по равностороннему треугольнику с длиной сторон, равной 1/3. На этом этапе мы получаем шестиконечную звезду, или звезду Давида. На каждой из сторон полученной звезды строим вышеописанным образом по равностороннему треугольнику и повторяем процесс до бесконечности. Точки средней трети любого из отрезков при каждом добавлении смещаются в перпендикулярном направлении, в то время как вершины треугольного инициатора остаются неподвижными. Остальные девять вершин звезды Давида достигают своих окончательных положений после конечного числа этапов. Некоторые точки смещаются бесконечное число раз, но каждый раз на меньшую величину, и в конце концов сходятся к неким пределам, которые и определяют форму береговой линии. Сам остров представляет собой предел последовательности областей, ограниченных многоугольниками, каждый из которых содержит область, ограниченную предыдущим многоугольником. Фотографический негатив такого предела можно увидеть на рис. 74. Обратите внимание на то, что и на этом, и на многих других рисунках чаще изображены не береговые линии, а острова и озера — вообще, «сплошным» фигурам явно отдается предпочтение перед контурами. Объясняется это очень просто — мы всего лишь пытались максимально эффективно использовать высокую разрешающую способность нашей графической системы. Почему к данной кривой нельзя провести касательную? Выберем в качестве неподвижной точки одну из вершин исходного треугольника и проведем прямую до некоторой точки, расположенной на предельной кривой, в направлении по часовой стрелке. По мере того, как выбранная точка на кривой приближается к нашей вершине, соединяющая их прямая колеблется внутри угла в 30 градусов и совершенно не желает устремляться к какому бы то ни было пределу, который мы могли бы назвать касательной в направлении по часовой стрелке. Касательная в направлении против часовой стрелки также не определена. Точка, к которой нельзя провести касательную, поскольку опущенные из нее хорды колеблются под вполне определенными углами, называется гиперболической точкой. Что касается тех точек, к которым кривая Рис. 71. ТРОИЧНЫЙ ОСТРОВ (ИЛИ СНЕЖИНКА) КОХА К. АЛЬТЕРНАТИВНОЕ ПОСТРОЕНИЕ ЭРНЕСТА ЧЕЗАРО (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ Альтернативное построение острова Коха предложено в статье Чезаро, посвященной кривым фон Коха [74] — работе настолько замечательной, что всякий раз, открывая журнал, я забываю о том, как долго и упорно я искал эту статью (и как разозлился, обнаружив впоследствии, что все мои труды были напрасны — мне следовало сразу же заглянуть в сборник [75]). Позволю себе привести несколько особенно восхитительных строк в моем вольном переводе. «Бесконечное вложение этой фигуры в самоё себя дает нам некоторое представление о том, что Теннисон однажды назвал внутренней бесконечностью — единственный, в сущности, род бесконечности, доступный нашему восприятию Природы. Благодаря такому подобию между целым и частями — вплоть до самых мельчайших, исчезающе малых частей — кривая Коха обретает воистину чудесные свойства. Если бы ей была дарована жизнь, то для того, чтобы убить ее, нам пришлось бы уничтожить всю кривую без остатка, ибо она возрождалась бы вновь и вновь из глубин своих треугольников; то же, впрочем, можно сказать и о жизни во Вселенной вообще». В роли инициатора в построении Чезаро выступает правильный шестиугольник с длиной стороны На приведенном рисунке показаны оба метода построения: и метод Коха (см. рис. 70) и только что описанный метод Чезаро. При таком представлении предельная береговая линия Коха оказывается зажатой между двумя неуклонно приближающимися изнутри и снаружи терагонами. Можно вообразить себе некий каскадный процесс, в начале которого мы имеем три концентрических кольца: твердая земля (черная), болото (белое) и вода (серая). С каждым этапом такого каскадного процесса некоторый участок болота преобразуется либо в твердую землю, либо в воду. В пределе болото донельзя истончается, превращаясь из «поверхности» в кривую. Интерпретация срединного смещения. Используем приведенные ниже генератор и последующий шаг (угол равен 120 градусов): Смещение средней точки прямолинейного отрезка наружу Рис. 73. ДВА ВИДА САМОПОДОБИЯ: СТАНДАРТНОЕ И ФРАКТАЛЬНОЕ На рисунке показано, как, располагая некоторым целым числом (в данном случае Нижняя фигура — это троичная кривая Коха или треть побережья острова Коха. Ее также можно разбить на подобные исходной кривой фигуры меньшего размера, при этом Хаусдорф показал, что величина Рис. 74. ТРОИЧНОЕ ОЗЕРО КОХА К (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ Продолжим построение, описанное в пояснениях к рисункам 70 и 71, до некоторого продвинутого этапа и сфотографируем результат. Негатив такой фотографии представлен на рисунке и напоминает скорее озеро, нежели остров. Необычный узор серых «волн», заполняющих это озеро, не случаен. Его описание можно найти в пояснениях к рисункам 104 и 105. Береговая линия озера Коха не самоподобна, поскольку замкнутую кривую нельзя представить в виде совокупности подобных ей меньших замкнутых кривых. < Хотя в главе 13 мы используем самоподобие для построения бесконечного скопления островов. ► Рис. 75 и 76. ДРУГИЕ ОСТРОВА И ОЗЕРО КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ Этим вариантом острова Коха мы обязаны В. Госперу (см. [163]): инициатором служит правильный шестиугольник, а генератор выглядит следующим образом: Рис. 75. Здесь приведено несколько этапов построения «острова Госпера» (показан жирной линией). О внутреннем заполнении острова (тонкая линия) мы поговорим чуть позже (см. рис. 106). Рис. 76. Одна из поздних стадий построения острова Госпера. За пояснениями относительно заполнения (линии различной толщины внутри острова) обратитесь к рис. 106. Заметьте, что в отличие от исходной кривой Коха, этот генератор симметричен относительно своего центра. Он совмещает в себе бухты и полуострова таким образом, что площадь острова на протяжении всего построения остается неизменной. То же верно и для кривых Коха (вплоть до рис. 88). Тайлинг. Островами Госпера можно полностью, без просветов, покрыть плоскость. Эта процедура называется покрытием, или тайлингом} Пертайлинг. Более того, этот остров самоподобен, в чем легко убедиться, взглянув на области на рисунке, заштрихованные линиями разной толщины. То есть каждый остров можно разделить на семь «провинций», каждая из которых может быть получена из целого острова преобразованием подобия с коэффициентом В большинстве случаев покрытия плоскости плитку нельзя разделить на какое-либо количество меньших плиток, подобных исходной. Многих, например, чрезвычайно раздражает, что сложенные вместе правильные шестиугольники не образуют столь же правильного большего шестиугольника. Из плиток Госпера вполне можно «состряпать» достаточно близкое подобие шестиугольника, способное точно разделиться на семь одинаковых частей. Другие фрактальные плитки позволяют осуществить деление на другое количество частей. Франция. Среди географических реалий есть одна фигура удивительно правильной формы, часто называемая за свою правильность Шестиугольником. Речь идет о Франции. Надо сказать, что фигура, символизирующая на географической карте Францию, гораздо меньше напоминает шестиугольник, нежели фигуру, изображенную на рис. 76 (хотя Бретань на нашем рисунке выглядит, пожалуй, несколько недокормленной). < Почему нельзя провести касательную ни в одной точке этой береговой линии? Выберите неподвижную точку на береговой линии, полученной после некоторого конечного числа этапов построения, и соедините эту точку прямой линией с некоторой движущейся точкой предельной береговой линии. По мере того, как движущаяся точка приближается к неподвижной точке вдоль предельной береговой линии (неважно, справа или слева), соединяющая точки прямая постоянно меняет направление. Такая неподвижная точка называется локсодромной точкой. ► Рис. 79. ПРОЧИЕ ОСТРОВА И ОЗЕРА КОХА (РАЗМЕРНОСТИ БЕРЕГОВЫХ ЛИНИЙ ОТ 1 ДО В данной последовательности фрактальных кривых инициатором выступает правильный многоугольник с числом сторон Штриховка внутри центрального острова ( Если параметр Критическая размерность. Когда в качестве инициатора выбирается отрезок [0, 1], угол Обобщение. Построения, изображенные на рис. 75-88, допускают следующее несложное обобщение. Назовем приведенные на рисунке генераторы прямыми (S) и определим обратный генератор (F) как зеркальное отражение прямого генератора относительно линии < При чередовании F- и S-генераторов локсодромические точки переходят в гиперболические, как в оригинальной кривой Коха. ► На рис. 79-85 показано несколько фигур Коха, инициатором которых является квадрат (отсюда и название квадратичные). Одним из преимуществ таких построений является то, что с ними можно экспериментировать даже на слабых графических системах. < Еще одно преимущество — квадратичные фрактальные кривые ведут непосредственно к оригинальной кривой Пеано, описанной в пояснении к рис. 95. ► Рис. 81. Инициатором здесь служит квадрат, а генератор выглядит следующим образом: Как и на рис. 75-79, на каждом этапе построения общая площадь острова остается неизменной. На рис. 81 вверху приведены два первых этапа построения крупным планом и два последующих в более мелком масштабе. Результат последнего этапа, еще более увеличенный, демонстрирует мельчайшие детали в виде очень тонких, едва видимых выступов, которых вы, конечно же, не увидели бы, не обладай наша графическая система такой превосходной разрешающей способностью. Как в терагонах, так и в предельной кривой отсутствует какое бы то ни было самоперекрытие, самопересечение или самокасание. Это утверждение остается в силе и для последующих построений (вплоть до рис. 85). < Не следует забывать о том, что фракталы на рис. 81-85 представляют береговые линии; суша и море здесь — это удобные фигуры, обладающие положительными и конечными площадями. На с. 209 упоминается случай, в котором только «море», будучи объединением простых трем, имеет вполне определенную площадь, в то время как суша не имеет ни единой внутренней точки. ► Тайлинг и пертайлинг. Этот остров можно разбить на 16 меньших островков ( < В главах 25 и 29 показано, что размерность Рис. 81. КВАДРАТИЧНЫЙ ОСТРОВ КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ В качестве инициатора снова возьмем квадрат, а генератором будет следующая ломаная: То, что береговая линия квадратичных островов Коха, представленных в данной подборке иллюстраций, в очень значительной степени зависит от < Максимальность. Свой вклад в сходство внешних форм вносит тот факт, что изображенные на рис. 79-85 квадратичные кривые Коха обладают весьма интересным свойством максимальности. Расположим все генераторы Коха, порождающие кривые без самопересечений, на квадратной решетке, образованной прямыми, параллельными и перпендикулярными отрезку [0, 1]. Допустим также, что все эти генераторы можно использовать с любыми инициаторами на нашей квадратной решетке. Определим как максимальные те генераторы, которые характеризуются наибольшим значением При увеличении Лакунарность. Фрактальные кривые с одинаковой размерностью Рис. 83. КВАДРАТИЧНЫЙ ОСТРОВ КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ На этих рисунках изображены те же конструкции, что и на рис. 79, только с другими генераторами. Вот так выглядит генератор для кривой на рис. 85: а так — для кривой на рис. 84: Дамбы и каналы этих лоцманских кошмаров становятся все уже по мере того, как мы продвигаемся по направлению к самым дальним мысам полуостровов или самым врезающимся в сушу языкам бухт. Вдобавок ко всему, стремление к сужению наблюдается и по мере роста фрактальной размерности, причем при < О турбулентной дисперсии. На мой взгляд, между последовательностью приближений фрактальных кривых, изображенных на рис. 85, и последовательными стадиями турбулентной дисперсии чернил в воде существует поразительное сходство. Разумеется, реальная дисперсия несколько менее упорядочена, однако это можно имитировать, введя в процесс построения элемент случайности. Можно сказать, что здесь мы наблюдаем ричардсонов каскад «в деле». Исходная малая толика энергии размазывает квадратное пятно чернил по поверхности воды. Затем первоначальное завихрение расщепляется на меньшие завихрения, воздействие которых носит более локальный характер. Исходная энергия разделяется на все уменьшающиеся порции, пока в конце концов не остается ничего, кроме легкой размытости контуров образовавшегося в результате пятна, как показано на приведенной ниже иллюстрации, позаимствованной из работы Коррсина [87]. Рис. 84 и 85. КВАДРАТИЧНЫЕ ОСТРОВА КОХА (РАЗМЕРНОСТИ БЕРЕГОВЫХ ЛИНИЙ То, что ричардсонов каскад порождает фигуру, ограниченную фрактальной кривой, несомненно. А вот с выводом о том, что ее размерность В сущности, значение Если последнее заключение верно, следующим шагом необходимо изучить связь между начальной энергией и Постскриптум. Уже после того, как эта иллюстрация появилась во «Фракталах» 1977 г., Пол Димотакис сфотографировал тонкие срезы турбулентной струи, рассеивающейся в ламинарной среде. Сходство снимков с иллюстрацией весьма меня порадовало. ► Рис. 87 и 88. ОБОБЩЕННЫЕ КРИВЫЕ КОХА И САМОПОДОБИЕ С НЕРАВНЫМИ КОЭФФИЦИЕНТАМИ ( При построении этих конструкций использован метод Коха, но с неравными длинами сторон Заметьте, что во всей предшествующей серии иллюстраций построение кривой продолжалось до тех пор, пока не достигало мельчайших деталей заранее определенного размера. Когда Теперь перед нами стоит задача распространить на данное обобщение рекурсии Коха концепцию размерности подобия. Предположим для начала, что некая стандартная евклидова фигура покрывается подобными ей частями, уменьшенными соответственно в Примеры. Размерность
|