§ 3. Эллипсоид энергииПотренируемся теперь в обращении с тензорами. Рассмотрим такой интересный вопрос: какая энергия требуется для поляризации кристалла (в дополнение к энергии электрического поля, которая, как известно, равна
Складывая теперь работы всех трех компонент, найдем, какой должна быть работа в единице объема:
Но поскольку величина
Теперь можно воспользоваться уравнением (31.5) и выразить
Плотность энергии Тензор Индексы нашего тензора поляризуемости могут принимать три различных значения, т. е. это трехмерный тензор. Математики рассматривают также тензоры размерности четыре, пять и больше. Кстати, четырехмерный тензор нам уже встречался при релятивистском описании электромагнитного поля (см. гл. 26, вып. 6) – это Тензор поляризуемости 1) включите электрическое поле в направлении оси 2) включите поле в направлении оси 3) выключите 4) выключите Теперь кристалл вернулся к прежнему положению и полная работа, затраченная на поляризацию, должна быть нулем. Но для этого, как вы можете убедиться, Это означает также, что тензор поляризуемости можно найти простым измерением энергии, необходимой для поляризации кристалла в различных направлениях. Предположим, мы сначала взяли электрическое поле
Если бы у нас была только одна компонента Выражение для энергии (31.8) имеет очень красивую геометрическую интерпретацию. Предположим, что нас интересует, какие поля
Это уравнение второй степени, так что, если мы отложим по осям величины Фиг. 31.2 Конец любого вектора Если теперь пустить в дело все три компоненты, то любой вектор Фиг. 31.3. Эллипсоид энергии для тензора поляризуемости. Заметьте теперь, что эллипсоид имеет очень интересное свойство - его всегда можно описать простым заданием направления трех «главных осей» и диаметров эллипсоида по этим осям. Такими «главными осями» являются направления наименьшего и наибольшего диаметра и направление, перпендикулярное к ним. На фиг. 31.3 они обозначены буквами
Итак, по отношению к главным осям у тензора поляризуемости останутся только три ненулевые компоненты
Иначе говоря, электрическое поле, направленное по любой одной из главных осей, дает поляризацию, направленную по той же оси, но, разумеется, для различных осей коэффициенты будут разными. Тензор часто записывается в виде таблицы из девяти коэффициентов, взятых в скобки:
Для главных же осей
Самое важное здесь то, что к такой форме подходящим выбором осей координат можно привести любой тензор поляризуемости (фактически любой симметричный тензор второго ранга какого угодно числа измерений). Если все три элемента тензора поляризуемости в диагональной форме равны друг другу, т. е. если
то эллипсоид энергии превращается в сферу, поляризуемость во всех направлениях становится одинаковой, а материал изотропным. В тензорных обозначениях
где
что, разумеется, означает
Тензор
т. е. получается наш старый результат для изотропного диэлектрика:
Форму и ориентацию эллипсоида поляризуемости иногда можно связать со свойствами симметрии кристалла. В гл. 30 мы уже говорили, что трехмерная решетка имеет 230 различных возможных внутренних симметрий и что для многих целей их удобно разбить на 7 классов в соответствии с формой элементарной ячейки. Эллипсоид поляризуемости должен отражать геометрию внутренней симметрии кристалла. Например, триклинный кристалл имеет самую низкую симметрию; у него все три оси эллипсоида разные и направления их, вообще говоря, не совпадают с направлением осей кристалла. Более симметричный моноклинный кристалл обладает той особенностью, что его свойства не меняются при повороте кристалла на 180° относительно одной оси, поэтому тензор поляризуемости при таком повороте должен остаться тем же самым. Отсюда следует, что эллипсоид поляризуемости при повороте на 180° должен переходить сам в себя. Но такое может случиться только, когда одна из осей эллипсоида совпадет с направлением оси симметрии кристалла. В других же отношениях ориентация и размеры эллипсоида могут быть какими угодно. Оси эллипсоида ромбического кристалла должны совпадать с кристаллическими осями, так как вращение такого кристалла на 180° вокруг любой оси повторяет ту же кристаллическую решетку. Если же взять тетрагональный кристалл, то эллипсоид тоже должен повторять его симметрию, т. е. два из его диаметров должны быть равны между собой. Наконец, для кубического кристалла равными должны быть все три диаметра эллипсоида - он превращается в сферу и поляризуемость кристалла одинакова во всех направлениях. Существует очень серьезная игра, состоящая в выяснении всех возможных свойств тензоров для всех возможных симметрий кристалла. Она мудрено называется «теоретико-групповым анализом». Однако для простых случаев тензора поляризуемости увидеть, какова должна быть эта связь, относительно легко.
|