Глава 9. КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА
В этой главе исследуется взаимодействие заряженных частиц с электромагнитным полем. Мы уже рассмотрели один пример такого взаимодействия в § 6 гл. 7, где переменные электромагнитного поля входили в потенциальную часть лагранжиана; переменные поля представлялись там векторным потенциалом
. При этом мы имели дело лишь с движением частиц в некотором заданном поле; очевидно, что при таком подходе нельзя ничего сказать о том, как возникает само поле
, или о том, как движущиеся частицы влияют на него. Другими словами, постановка задачи не включала в себя никакого исследования динамики поля. Подобный подход, основанный на использовании заданных потенциалов, конечно, является приближением. Он оправдан, когда размеры установок, с помощью которых создаются потенциалы, настолько велики, что движение частиц никак не влияет на величину потенциалов.
Теперь мы будем интересоваться не только влиянием потенциалов на движение частиц, но и влиянием самих частиц на потенциалы. Начнем с классического подхода и применим для описания электромагнитного поля уравнения Максвелла; они выражают параметры поля через плотности зарядов и токов окружающего вещества.
В предыдущих главах мы уже видели, что квантовомеханическое описание некоторых классических систем легко дать в тех случаях, когда классические законы можно выразить на языке принципа наименьшего действия. Так, если экстремальное значение действия
варьируемого по некоторой переменной
, приводит к классическим уравнениям движения, то соответствующие квантовомеханические законы выражаются следующим образом: амплитуда вероятности некоторого заданного события, соответствующая действию
, равна интегралу по траекториям от функции
, взятому по всем возможным путям изменения переменной
, при которых выполнены условия осуществления данного события.
Для такого подхода крайне существенно, что основные законы классической электродинамики, выражаемые уравнениями Максвелла, тоже могут быть сформулированы с помощью принципа наименьшего действия. Пусть существует действие
, которое можно представить через векторный и скалярный потенциалы
и
; определение экстремального значения этого действия при варьировании его по переменным поля
и
приводит к формулировке электромагнетизма, эквивалентной уравнениям Максвелла. Тогда, рассуждая по аналогии, мы будем искать законы квантовой электродинамики, исходя из правила: амплитуда вероятности какого-либо события равна
, (9.1)
где интеграл по траекториям берется по всем значениям потенциалов
и
в каждой точке пространства-времени и вдоль всех путей, удовлетворяющих определенным граничным условиям в начальной и конечной мировых точках события.