Читать в оригинале

Теория вероятностей

  

Вентцель Е.С. Теория вероятностей: Учеб. для вузов. — 6-е изд. стер. — М.: Высш. шк., 1999.— 576 c.

Книга представляет собой один из наиболее известных учебников по теории вероятностей и предназначена для лиц, знакомых с высшей математикой и интересующихся техническими приложениями теории вероятностей. Она представляет также интерес для всех тех, кто применяет теорию вероятностей в своей практической деятельности.

В книге уделено большое внимание различным приложениям теории вероятностей (теории вероятностных процессов, теории информации, теории массового обслуживания и др.).


Оглавление

Глава 1. Введение
ПРЕДИСЛОВИЕ
1.1. Предмет теории вероятностей
Теория вероятностей: 1.2. Краткие исторические сведения
Глава 2. Основные понятия теории вероятностей
2.1. Событие. Вероятность события
2.2. Непосредственный подсчет вероятностей
2.3. Частота, или статистическая вероятность, события
2.4. Случайная величина
2.5. Практически невозможные и практически достоверные события. Принцип практической универсальности
Глава 3. Основные теоремы теории вероятностей
3.1. Назначение основных теорем. Сумма и произведение событий
3.2. Теорема сложения вероятностей
3.3. Теорема умножения вероятностей
3.4. Формула полной вероятности
3.5. Теорема гипотез (формула Бейеса)
Глава 4. Повторение опытов
4.1. Частная теорема о повторении опытов
4.2. Общая теорема о повторении опытов
Глава 5. Случайные величины и их законы распределения
5.1. Ряд распределения. Многоугольник распределения
5.2. Функция распределения
5.3. Вероятность попадания случайной величины на заданный участок
5.4. Плотность распределения
5.5. Числовые характеристики случайных величин. Их роль и назначение
5.6. Характеристики положения (математическое ожидание, мода, медиана)
5.7. Моменты. Дисперсия. Среднее квадратичное отклонение
5.8. Закон равномерной плотности
5.9. Закон Пуассона
Глава 6. Нормальный закон распределения
6.1. Нормальный закон распределения и его параметры
6.2. Моменты нормального распределения
6.3. Вероятность попадания случайной величины, подчиненной нормальному закону, на заданный участок. Нормальная функция распределения
6.4. Вероятное (срединное) отклонение
Глава 7. Определение законов распределения случайных величин на основе опытных данных
7.1. Основные задачи математической статистики
7.2. Простая статистическая совокупность. Статистическая функция распределения
7.3. Статистический ряд. Гистограмма
7.4 Числовые характеристики статистического распределения
7.5. Выравнивание статистических рядов
7.6. Критерии согласия
Глава 8. Системы случайных величин
8.1. Понятие о системе случайных величин
8.2. Функция распределения системы двух случайных величин
8.3. Плотность распределения системы двух случайных величин
8.4. Законы распределения отдельных величин, входящих в систему. Условные законы распределения
8.5 Зависимые и независимые случайные величины
8.6. Числовые характеристики системы двух случайных величин. Корреляционный момент. Коэффициент корреляции
8.7. Система произвольного числа случайных величин
8.8. Числовые характеристики системы нескольких случайных величин
Глава 9. Нормальный закон распределении дли системы случайных величин
9.1. Нормальный закон на плоскости
9.2 Эллипсы рассеивания. Приведение нормального закона к каноническому виду
9.3. Вероятность попадания в прямоугольник со сторонами, параллельными главным осям рассеивания
9.4. Вероятность попадания в эллипс рассеивания
9.5. Вероятность попадания в область произвольной формы
9.6. Нормальный закон в пространстве трех измерений. Общая запись нормального закона для системы произвольного числа случайных величин
Глава 10. Числовые характеристики функций случайных величин
10.1. Математическое ожидание функции. Дисперсия функции
10.2. Теоремы о числовых характеристиках
10.3. Применения теорем о числовых характеристиках
Глава 11. Линеаризация функций
11.1. Метод линеаризации функций случайных аргументов
11.2. Линеаризация функции одного случайного аргумента
11.3. Линеаризация функции нескольких случайных аргументов
11.4. Уточнение результатов, полученных методом линеаризации
Глава 12. Законы распределения функций случайных аргументов
12.1. Закон распределения монотонной функции одного случайного аргумента
12.2. Закон распределения линейной функции от аргумента, подчиненного нормальному закону
12.3. Закон распределения немонотонной функции одного случайного аргумента
12.4. Закон распределения функции двух случайных величин
12.5. Закон распределения суммы двух случайных величин. Композиция законов распределения
12.6. Композиция нормальных законов
12.7. Линейные функции от нормально распределенных аргументов
12.8. Композиция нормальных законов на плоскости
Глава 13. Предельные теоремы теории вероятностей
13.1. Закон больших чисел и центральная предельная теорема
13.2. Неравенство Чебышева
13.3. Закон больших чисел (теорема Чебышева)
13.4. Обобщенная теорема Чебышева. Теорема Маркова
13.5. Следствия закона больших чисел: теоремы Бернулли и Пуассона
13.6. Массовые случайные явления и центральная предельная теорема
13.7. Характеристические функции
13.8. Центральная предельная теорема для одинаково распределенных слагаемых
13.9. Формулы, выражающие центральную предельную теорему и встречающиеся при ее практическом применении
Глава 14. Обработка опытов
14.1. Особенности обработки ограниченного числа опытов. Оценки дли неизвестных параметров закона распределения
14.2. Оценки для математического ожидания и дисперсии
14.3. Доверительный интервал. Доверительная вероятность
14.4. Точные методы построения доверительных интервалов для параметров случайной величины, распределенной по нормальному закону
14.5. Оценка вероятности по частоте
14.6. Оценки для числовых характеристик системы случайных величин
14.7. Обработка стрельб
14.8. Сглаживание экспериментальных зависимостей по методу наименьших квадратов
Глава 15. Основные понятия теории случайных функций
15.1. Понятие о случайной функции
15.2. Понятие о случайной функции как расширение понятия о системе случайных величин. Закон распределения случайной функции
15.3. Характеристики случайных функций
15.4. Определение характеристик случайной функции из опыта
15.5. Методы определения характеристик преобразованных случайных функций по характеристикам исходных случайных функций
15.6. Линейные и нелинейные операторы. Оператор динамической системы
15.7. Линейные преобразования случайных функций
15.7.1. Интеграл от случайной функции
15.7.2. Производная от случайной функции
15.8. Сложение случайных функций
15.9. Комплексные случайные функции
Глава 16. Канонические разложения случайных функций
16.1. Идея метода канонических разложений. Представление случайной функции в виде суммы элементарных случайных функций
16.2. Каноническое разложение случайной функции
16.3. Линейные преобразования случайных функций, заданных каноническими разложениями
Глава 17. Стационарные случайные функции
17.1. Понятие о стационарном случайном процессе
17.2. Спектральное разложение стационарной случайной функции на конечном участке времени. Спектр дисперсий
17.3. Спектральное разложение стационарной случайной функции на бесконечном участке времени. Спектральная плотность стационарной случайной функции
17.4. Спектральное разложение случайной функции в комплексной форме
17.5. Преобразование стационарной случайной функции стационарной линейной системой
17.6. Применения теории стационарных случайных процессов к решению задач, связанных с анализом и синтезом динамических систем
17.7. Эргодическое свойство стационарных случайных функций
17.8. Определение характеристик эргодической стационарной случайной функции по одной реализации
Глава 18. Основные понятия теории информации
18.1. Предмет и задачи теории информации
18.2. Энтропия как мера степени неопределенности состояния физической системы
18.3. Энтропия сложной системы. Теорема сложения энтропий
18.4. Условная энтропия. Объединение зависимых систем
18.5. Энтропия и информация
18.6. Частная информация о системе, содержащаяся в сообщении о событии. Частная информация о событии, содержащаяся в сообщении о другом событии
18.7. Энтропия и информация для систем с непрерывным множеством состояний
18.8. Задачи кодирования сообщений. Код Шеннона-Фэно
18.9. Передача информации с искажениями. Пропускная способность канала с помехами
Глава 19. Элементы теории массового обслуживания
19.1. Предмет теории массового обслуживания
19.2. Случайный процесс со счетным множеством состояний
19.3. Поток событий. Простейший поток и его свойства
19.4 Нестационарный пуассоновский поток
19.5. Поток с ограниченным последействием (поток Пальма)
19.6. Время обслуживания
19.7. Марковский случайный процесс
19.8. Система массового обслуживания с отказами. Уравнения Эрланга
19.9. Установившийся режим обслуживания. Формулы Эрланга
19.10. Система массового обслуживания с ожиданием
19.11. Система смешанного типа с ограничением по длине очереди
Приложения
Таблица 1 Значения нормальной функции распределения
Таблица 2. Значения экспоненциальной функции
Таблица 3. Значения нормальной функции
Таблица 4. Значения "хи-квадрат" в зависимости от r и p
Таблица 5. Значения удовлетворяющие равенству
Таблица 6. Таблица двоичных логарифмов целых чисел от 1 до 100
Таблица 7. Таблица значений функции
Таблица 8. Значения распределение Пуассона