Читать в оригинале

Дифференциальное и интегральное исчисление

  

Высшая математика: Учеб. для вузов: В 3 т. / Я. С. Бугров, С. М. Никольский; Под ред. В. А. Садовничего. — 6-е изд., стереотип. — М.: Дрофа, 2004. — (Высшее образование: Современный учебник).

Т. 2: Дифференциальное и интегральное исчисление. — 512 c.

Учебник (1-е изд. —1980 г.) вместе с другими учебниками тех же авторов—«Элементы линейной алгебры и аналитической геометрии» (том 1) и «Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного» (том 3) — соответствует требованиям Государственного образовательного стандарта высшего профессионального образования.

Книга содержит: введение в анализ, дифференциальное и интегральное исчисление функций одной переменной, дифференциальное исчисление функций нескольких переменных, ряды.

Для студентов инженерно-технических специальностей вузов.


Оглавление

ПРЕДИСЛОВИЕ
Глава 1. ВВЕДЕНИЕ
§ 1.1. Предмет математики. Переменные и постоянные величины, множества
§ 1.2. Операции над множествами
§ 1.3. Символика математической логики
§ 1.4. Действительные числа
§ 1.5. Определение равенства и неравенства
§ 1.6. Определение арифметических действий
1.6.1. Общие соображения
1.6.2. Стабилизирующиеся последовательности
1.6.3. Определение арифметических действий
§ 1.7. Основные свойства действительных чисел
§ 1.8. Аксиоматический подход к понятию действительного числа
§ 1.9. Неравенства для абсолютных величин
§ 1.10. Отрезок, интервал, ограниченное множество
§ 1.11. Счетное множество. Счетность множества рациональных чисел. Несчетность множества действительных чисел
Глава 2. Предел последовательности
§ 2.1. Понятие предела последовательности
§ 2.2. Арифметические действия с переменными, имеющими предел
§ 2.3. Бесконечно малая и бесконечно большая величины
§ 2.4. Неопределенные выражения
§ 2.5. Монотонные последовательности
§ 2.6. Число e
§ 2.7. Принцип вложенных отрезков
§ 2.8. Точные верхняя и нижняя грани множества
§ 2.9. Теорема Больцано-Вейерштрасса
§ 2.10. Верхний и нижний пределы
§ 2.11. Условие Коши сходимости последовательности
§ 2.12. Полнота и непрерывность множества действительных чисел
Глава 3. Функция. Предел функции
§ 3.1. Функция
3.1.1. Функция от одной переменной.
3.1.2. Функции многих переменных.
3.1.3. Полярная система координат
§ 3.2. Предел функции
§ 3.3. Непрерывность функции
§ 3.4. Разрывы первого и второго рода
§ 3.5. Функции, непрерывные на отрезке
§ 3.6. Обратная непрерывная функция
§ 3.7. Равномерная непрерывность функции
§ 3.8. Элементарные функции
§ 3.9. Замечательные пределы
§ 3.10. Порядок переменной. Эквивалентность
Глава 4. Дифференциальное исчисление функций одной переменной
§ 4.1. Производная
§ 4.2. Геометрический смысл производной
§ 4.3. Производные элементарных функций
§ 4.4. Производная сложной функции
§ 4.5. Производная обратной функции
§ 4.6. Производные элементарных функций (продолжение)
§ 4.7. Дифференциал функции
4.7.1. Дифференцируемые функции
4.7.2. Дифференциал функции
4.7.3. Приближенное выражение приращения функции
§ 4.8. Другое определение касательной
§ 4.9. Производная высшего порядка
§ 4.10. Дифференциал высшего порядка. Инвариантное свойство дифференциала первого порядка
§ 4.11 Дифференцирование параметрически заданных функций
§ 4.12. Теоремы о среднем значении
§ 4.13. Раскрытие неопределенностей
§ 4.14. Формула Тейлора
§ 4.15. Ряд Тейлора
§ 4.16. Формулы и ряды Тейлора элементарных функций
§ 4.17. Локальный экстремум функции
§ 4.18. Экстремальные значения функции на отрезке
§ 4.19. Выпуклость кривой. Точка перегиба
§ 4.20. Асимптота графика функции
§ 4.21. Непрерывная и гладкая кривая
§ 4.22. Схема построения графика функции
§ 4.23. Вектор-функция. Векторы касательной и нормали
Глава 5. неопределенные интегралы
§ 5.1. Неопределенный интеграл. Таблица интегралов
§ 5.2. Методы интегрирования
§ 5.3. Комплексные числа
§ 5.4. Теория многочлена n-й степени
§ 5.5. Действительный многочлен n-й степени
§ 5.6. Интегрирование рациональных выражений
§ 5.7. Интегрирование иррациональных функций
Глава 6. Определенный Интеграл
§ 6.1. Задачи, приводящие к понятию определенного интеграла, и его определение
§ 6.2. Свойства определенных интегралов
§ 6.3. Интеграл как функция верхнего предела
§ 6.4. Формула Ньютона – Лейбница
§ 6.5. Остаток формулы Тейлора в интегральной форме
§ 6.6. Суммы Дарбу. Условия существования интеграла
§ 6.7. Интегрируемость непрерывных и монотонных функций
§ 6.8. Несобственные интегралы
§ 6.9. Несобственные интегралы от неотрицательных функций
§ 6.10. Интегрирование по частям несобственных интегралов
§ 6.11. Несобственный интеграл с особенностями в нескольких точках
Глава 7. Приложения интегралов. Приближенные методы
§ 7.1. Площадь в полярных координатах
§ 7.2. Объем тела вращения
§ 7.3. Гладкая кривая в пространстве. Длина дуги
§ 7.4. Кривизна и радиус кривизны кривой. Эволюта и эвольвента
§ 7.5. Площадь поверхности вращения
§ 7.6. Интерполяционная формула Лагранжа
§ 7.7. Квадратурные формулы прямоугольников и трапеций
§ 7.8. Формула Симпсона
Глава 8. Дифференциальное исчисление функций многих переменных
§ 8.1. Предварительные сведения
§ 8.2. Предел функции
§ 8.3. Непрерывная функция
§ 8.4. Частные производные и производная по направлению
§ 8.5. Дифференцируемые функции
§ 8.6. Применение дифференциала в приближенных вычислениях
§ 8.7. Касательная плоскость. Геометрический смысл дифференциала
§ 8.8. Производная сложной функции. Производная по направлению. Градиент
8.8.1. Производная сложной функции
8.8.2. Производная по направлению
8.8.3. Градиент функции
8.8.4. Однородные функции
§ 8.9. Дифференциал функции. Дифференциал высшего порядка
§ 8.10. Формула Тейлора
§ 8.11. Замкнутое множество
§ 8.12. Непрерывная функция на замкнутом ограниченном множестве
§ 8.13. Экстремумы
§ 8.14. Нахождение наибольших и наименьших значений функции
§ 8.15. Теорема существования неявной функции
§ 8.16. Касательная плоскость и нормаль
§ 8.17. Системы функций, заданных неявно
§ 8.18. Отображения
§ 8.19. Условный (относительный) экстремум
Глава 9. Ряды
§ 9.1. Понятие ряда
§ 9.2. Несобственный интеграл и ряд
§ 9.3. Действия с рядами
§ 9.4. Ряды с неотрицательными членами
§ 9.5. Ряд Лейбница
§ 9.6. Абсолютно сходящиеся ряды
§ 9.7. Условно сходящиеся ряды с действительными членами
§ 9.8. Последовательности и ряды функций. Равномерная сходимость
§ 9.9. Интегрирование и дифференцирование равномерно сходящихся рядов
§ 9.10. Перемножение абсолютно сходящихся рядов
§ 9.11. Степенные ряды
§ 9.12. Дифференцирование и интегрирование степенных рядов
§ 9.13. Функции exp(z), sinz, cosz от комплексного переменного
§ 9.14. Ряды в приближенных вычислениях
§ 9.15. Понятие кратного ряда
§ 9.16. Суммирование рядов и последовательностей